ISRAEL JOURNAL OF MATHEMATICS 115 (2000), 101-123

BI-GALOIS OBJECTS OVER THE TAFT ALGEBRAS

BY

PETER SCHAUENBURG

Mathematisches Institut der Universitdat Minchen
Theresienstr. 39, 80338 Minchen, Germany
e-mail: schauen@rz.mathematik.uni-muenchen.de

ABSTRACT

Let k be a field. We study the groupoid of Hopf bi-Galois objects, whose
objects are k-Hopf algebras, and whose morphisms are L-H-bi-Galois
extensions of k for Hopf algebras L and H.

We show that if H = Hp ., is one of the Taft algebras, then L = Hy
in any L-H-bi-Galois object. We compute the group of bi-Galois objects
over the two-generator Taft algebras Hy 1. We classify the isomorphism
classes of Galois extensions of k over the general Taft algebras Hy m, and
we compute the groups of bi-Galois objects over Hy ., for odd N.

Our computations for the two-generator Taft algebras rely on Masuoka’s
classification [9] of their cleft extensions. To treat the general Taft
algebras, we will generalize a result of Kreimer [6] to give a description
of the Galois objects over a tensor product of two Hopf algebras.

1. Introduction

Hopf-Galois extensions were introduced by Chase and Sweedler [1] (for the com-
mutative case) and Kreimer and Takeuchi [8] as a generalization of the Galois
theory of rings [2], in which the action of the Galois group is replaced by the
coaction of a Hopf algebra. By definition, an H-Galois extension A of a sub-
algebra B over a Hopf algebra H is an extension of algebras in which A is a
right H-comodule algebra via the coaction p: A - A ® H, the algebra B is the
algebra of coinvariants A := {a € A| p(a) = a ® 1}, and a certain canonical
map Ka: AQ@g A — AQ® H is a bijection. In the present paper, only H-Galois
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extensions of the base field k£ are considered; we will call them H-Galois objects
for short.

If H is a finite dimensional cocommutative Hopf algebra, then the isomorphism
classes of H-Galois objects form a group by [5]. Composition in this group is the
cotensor product over H, and if H is the group algebra of a commutative group,
then the Harrison group is a subgroup. The construction of a cotensor product
Galois object from two H-Galois objects fails if H is not cocommutative. The
situation can be amended by considering additional structures. By definition
an L-H-bi-Galois object A, for two Hopf algebras H and L, is a right H-Galois
object, as defined above, as well as a left L-Galois object (involving a left coaction
A = L ® A) in such a way that the two coactions make A an L-H-bicomodule.
Now, given three Hopf algebras L, H, and R, an L-H-bi-Galois object A, and an
H-R-bi-Galois object B, one can form the cotensor product AOg B, which is an
L-R-bi-Galois object. In this way, one obtains the groupoid of bi-Galois objects,
whose objects are Hopf algebras, and whose morphisms are isomorphism classes
of bi-Galois objects, with the cotensor product as composition [12]. As a special
case, the isomorphism classes of H-H-bi-Galois objects form a group BiGal(H);
this special case was discussed in [17].

A bi-Galois structure is in fact no additional requirement of a Galois object:
Whenever A is an H-Galois object, there is a unique Hopf algebra L = L(A, H)
associated to it such that A is in fact an L-H-bi-Galois object (see [12], gener-
alizing the commutative case treated by Van Oystaeyen and Zhang [17]). The
construction L{A, H) generalizes the double twist of a Hopf algebra by a two-
cocycle, as introduced by Doi [3]. The motivation in [17] is that the additional
structure of a bi-Galois extension that comes automatically with every Galois ob-
ject admits the formulation of analogues of the Fundamental Theorem of Galois
Theory for Hopf-Galois objects (see also [12, 14] for more general versions).

In the present paper we compute explicitly for an interesting class of Hopf alge-
bras the group BiGal(H) of bi-Galois objects. The Taft algebras were introduced
[16] as an early nontrivial example of a noncommutative non-cocommutative Hopf
algebra. The Taft algebra Hy », is generated by m grouplike and one skew prim-
itive element, using a primitive N-th root of unity in the commutation relations
between grouplikes and the skew primitive. The two-generator Taft algebras
Hy = Hpy,1 occur as building blocks in the finite quotients of quantized envelop-
ing algebras at a root of unity.

Masuoka [9] has classified all cleft extensions over the two-generator Taft al-
gebras. Using his results we compute, in Section 2, all bi-Galois objects over
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the two-generator Taft algebras. We find that in any L-H-bi-Galois object with
H = Hpy, we also have L = Hy. Equivalently, every double twist of Hy by
a two-cocycle is isomorphic to Hy. We compute the group BiGal(Hy) to be
isomorphic to the semidirect product k % k, where k denotes the multiplicative
group of the base field.

In Section 3 we generalize partly a theorem of Kreimer [6, Thm. 3.7] that
describes the group Gal(H; ® H2) of Galois objects over the tensor product of
two finitely generated projective cocommutative Hopf algebras H; and Hj (in
Kreimer’s paper, as well as in Section 3, k is a commutative ring rather than, in
the rest of the paper, a field). Taking away the statement on the group structure
of Gal(H; ® Hy), Kreimer’s result says that every Galois object over H; ® H»
can be built up uniquely (up to isomorphism, of course) from Galois objects A;
over H; for i = 1,2 and a Hopf algebra pairing H; ® Hy — k. We can carry this
result over to the non-cocommutative case by taking into account the structure
of a bi-Galois object that every Galois object carries naturally by [12]: If H; and
Hj are two (not necessarily cocommutative) Hopf algebras, every Galois object
over Hy ® Hy can be built up from Galois objects A; over H; for i = 1,2, and a
skew pairing L(Az, Ha) ® L{(Ay, H;) — k. One can also compute the bi-Galois
structure of the Galois object obtained in this way.

The results of Section 3 are put to use when we compute the Galois and bi-
Galois objects over the general Taft algebras in the last section. In fact it is
easy to see that the Taft algebra Hy ., is isomorphic to the tensor product Hopf
algebra kCy™' ® Hy, where Cy denotes the cyclic group of order N. Again,
we find that in every L-H-bi-Galois object with H = Hy ,,, we have L = Hy ,,
as well; equivalently, every cocycle double twist of Hy », is isomorphic to Hy .
We compute the group BiGal(Hy ) of bi-Galois objects over the general Taft
algebras to be isomorphic to

(GLim—1(Z/ (N)) % (Z/(N))™) . (Skewm—1(Z/(N)) x (k 5 k) x (k/k™)™=1)

for suitable actions and a suitable group cocycle w. Here we denote by
Skew,,—1(Z/(N)) the additive group of skew symmetric (m — 1)-by-(m — 1)
matrices with zero diagonal.

PRELIMINARIES AND NOTATIONS. We collect some conventions as well as back-
ground material on Hopf-Galois and bi-Galois extensions.

Throughout the paper (except in Section 3) k denotes a fixed base field, and &
denates its unit group; algebras, tensor products, coalgebras etc. are over k. We
use Sweedler’s notation for comultiplication in the form A(h) = h(1) ® h(z). We
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use the notations p(v) = v(gy ® vy for the comodule structure p: V — V ® H of
a right H-comodule. We use A(v) = v(_1) ® v(g) for a left H-comodule structure
AV - H®YV. For a right (resp. left) H-comodule V over a bialgebra H we
denote by

VeelH .= (veV|pw)=v®l} (resp. °HV .={veV|Iv)=1®v)})

the subspace of right (resp. left) coinvariant elements. A (right or left) H-
comodule algebra for a bialgebra H is a (right or left) H-comodule and algebra
A, so that the comodule structure is an algebra map. The right H-comodule
algebra A is said to be an H-Galois extension of its subalgebra B if B = A®H
and the map k4: AQp A - A® H given by ka(z®y) = zy«) ® yq) is a
bijection. An H-Galois extension of the base field k will be called an H-Galois
object for short. A left H-Galois object is a left H-comodule algebra A such that
©HA=Fkand k: A® A - H® A with &'(z ® y) = z(_1) ® Z(0)y is a bijection.
An L-H-bi-Galois object for Hopf algebras L and H is a left L-Galois object as
well as right H-Galois object A such that the left and right comodule structures
make A an L-H-bicomodule. If A is a right H-Galois object, then there is a
unique Hopf algebra L = L(A, H) such that A is an L-H-bi-Galois object. If A
is an L-H-bi-Galois object and B is an H-R-bi-Galois object for Hopf algebras
L,H, and R, then the cotensor product

ACyB = {Zwi@)yi € A®B’ Zp(mi)@)yi :Zfli@)\(yi)},

as an L-subcomodule, R-subcomodule, and subalgebra of A ® B, is an L-R-bi-
Galois object. Bi-Galois objects form a groupoid with Hopf algebras as objects,
isomorphism classes of bi-Galois objects as morphisms, and cotensor product as
composition. In particular, the isomorphism classes of H-H-bi-Galois objects
form a group BiGal(H) for every Hopf algebra H.

A right H-comodule algebra A is said to be cleft if there is a convolution
invertible right colinear map ®: H — A. A cleft right H-comodule algebra with
A°H = [ is aright H-Galois object; the converse is true if H is finite dimensional
[7].

For a Hopf algebra H, we denote by Autpops(H) the group of its Hopf algebra.
automorphisms. For an algebra map u € Alg(H, k) we denote by coinn(u): H —
H the coinner automorphism of H induced by u, that is,

coinn(u)(h) = v~ (hy Y heyulhe),

! = 4S denotes the convolution inverse of u. The set Colnn(H) :=

where u~
{coinn(u)| v € Alg(H, k)} of coinner automorphisms of H is a normal subgroup
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of Autpops(H); we call the quotient CoOut(H) := Autyept(H)/ Colnn(H) the
co-outer automorphism group of H. For a left H-comodule V and a coalgebra
map f: H — H we denote by /V the vector space V with the left H-comodule
structure v — f (v(_l)) ® v(g), where v = v(_1) ® v(y) denotes the original H-
comodule structure of V. A group homomorphism Autyeps(H) — BiGal(H) is
given by f — fH. By [12, Lem. 3.11] this induces an injective homomorphism
I: CoOut(H) — BiGal(H).

Let H be a Hopf algebra. A two-cocycle on H isamap o: HQH — k satisfying

o(fay,9)o(f@29@2),h) = o(gq), ha))o(f, 9@ he))

and o(h,1) = o(1,h) = 1 for all f,g,h € H. If o is a (convolution) invertible
two-cocycle, then Doi [3] constructs a double twisted Hopf algebra H? which is
H as a coalgebra with multiplication g - h = a(g(1), h(1))92)h2)0 " (9(3), P(3) )-

The right H-comodule algebra k,[H| := k#,H is defined to be H with multi-
plication defined by g-h = (g1), h(1))9(2)h(2)- It is an H?-H-bicomodule algebra
via the comultiplication of H. If ¢ is a convolution invertible two-cocycle, then
k,[H] is an H-cleft extension of k. One has L(k,[H|,H) = H°.

2. Bi-Galois objects over the two-generator Taft algebras

Let N > 1 be an integer, and assume that k contains a primitive N-th root of
unity q. We denote by {(g) the multiplicative group of N-th roots of unity in k,
which is generated by ¢. The two-generator Taft algebra [16] is

Hy = Hyg:= kX, Y)/(XN -1, YN Y X — ¢XY).

It is a Hopf algebra with grouplike X and (1, X)-primitive Y; that is, comulti-
plication is given by A(X) = X ® X and A(Y) =1®Y +Y ® X, the counit
is given by £(X) = 1 and £(Y) = 0 and the antipode is given by S(X) = XVN-!
and S(Y) = —¢ ! XN-1Y. A k-basis of Hy is {X'Y|0<i< N, 0<j< N}
The set of grouplike elements of Hy is G(Hy) = {1,X,X?,..., XV}, For
any i,j with j # i + 1mod N, all (X*, X7)-primitives are trivial (multiples of
X* — X7), while the set of (X*, X7)-primitives is Px: x; = k(X — X7) ® kX'Y
for j =i+ 1mod N. (See [11, Expl. 1.4] and {10, Lem. 16.1].)

LEMMA 2.1: We have a group isomorphism
®o: k Sre f. € AutHopf(HN)

where f(X) =X and f.(Y)=rY.
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Moreover, Alg(Hy, k) = {u,| r € {g)}, where u,.(X) =r and u.(Y) = 0. For
r € {(g) we have po{coinn(u,)) = f, so that ¢y induces an isomorphism

©: k/{g) = CoOut(Hp).

Proof: Since X is the unique grouplike admitting a nontrivial (1, X)-primitive,
it is fixed by any Hopf algebra automorphism f. Moreover, f(Y) is a nontrivial
(1, X)-primitive, hence f(Y) = rY + (X — 1) for some r € k and t € k, and
0=f(YX —qXY)=f(Y)X —¢Xf(Y)=t(1-q)(X —1)X, whence t =0. The
remaining assertions are straightforward to check. 1

The following is a special case of [9, Prop. 2.17, Lem. 2.19):

THEOREM 2.2: 1. For a € k and 8 € k the algebra

Aop = ANy = kiz,y)/ (" — o, y™ — B,yz — qzy)

is a cleft right Hx-Galois object with right comodule structure p = ps g
defined by p(z) = 2 ® X and p(y) = 1QY +y® X. A right colinear
convolution invertible map ® Hy — An o is given by ®(X'Y7) = z'y
for0<i<Nand0<j<N.

2. Any right Hy-Galois object is of the form described in 1.

3. The set Alg"™ (AN o p', AN,a,3) Of comodule algebra homomorphisms (all
of which are necessarily isomorphisms) is empty if 3 # 3'. If 3 = 3, it
consists precisely of the g, for s € k with o = sV
9s(y) = y.

a, where g;(z) = sz and

DEFINITION AND LEMMA 2.3: Let a € k and B € k. Then Ay o p is an Hy-
bi-Galois object with the right comodule structure defined above and the left
comodule structure A = A, g defined by M(z) = X @z and A(y) = 1®@y+Y ®=z.

Proof: That A is well defined is proved in the same way as that p is well defined
(or the comultiplication of Hy is): For any elements a,b of a k-algebra R we
have

ba=qab = (a+b)N =a" +b"

which shows that (1®y + Y ® )V = 3, while (X ® z)V = a is obvious as well
as (1Qy+YRz)(X®z)=¢XQz)(1®y+Y ®x). That A := Anapg is
an Hpy-bicomodule is easy to check. To see that it is left Galois, it is enough
to show that the left Galois map k' = (Hy @ V)(AQ A): A® A+ Hy® A is
surjective. For this in turn it is enough to check that for each h in a generating
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set of Hy thereis Y z;Qy; € A® A with £'( 2;®y;) = h®1. Indeed, if we have
S 218y, N0l @y. € A@ A with /(¥ a6y = hel and #(X sl@y)) = g®1,
then &'(3_ ;7 ® y;y:) = hg® 1, and for a € A we have h® a = k' (3 z; ® y;a).
Now X1 =k(z®z ) and Y ®1 =k (y®z7! ~1®yz~!) completes the
proof. ]

By [12, Thm. 3.5] there is, for any right H-Galois object A, a unique up to
isomorphism Hopf algebra L{ A, H) such that A is an L(A, H)-H-bi-Galois object.

COROLLARY 2.4: For any right Hy-Galois object A we have L(AN o8, Hn) =
Hy. For any invertible two-cocycle o: Hy ® Hy — k we have HY, = Hy.
The Hopf algebra Hy is determined up to isomorphism by the k-linear monoidal
category of its comodules.

The first assertion is contained in the preceding lemma. For an invertible
cocycle 0 we have Hf = L(k#,Hn,Hy) by [12, Thm. 3.9]. By Theorem
2.2 we have k#,HN = Anop for suitable a,3, and by Lemma 2.3 we have
L(AN o p,Hn) = Hy. If H' is a Hopf algebra whose category of comodules is
equivalent as a monoidal category to the category of Hy-comodules, then there
is an H'-Hy-bi-Galois object by (12, Cor. 5.7.], whence H' = Hy.

THEOREM 2.5: The map

¥: k x k — BiGal(Hy)
(a) :8) — [AN,a,ﬁ]

is a group isomorphism. The diagram

CoOut(Hy) BiGal(Hy)

® (]

/lq) —————kxck

commutes for I'([r]) = (r™,0).

Proof: Let A be any Hpy-bi-Galois object. By Theorem 2.2 we can assume
that A = Ay o s as a right Hy-comodule algebra, with a suitable left comodule
structure X'. By [12, Thm. 3.5] there is a unique automorphism f: Hy — Hy
with (f @ 1)A = X, that is, A = f Ay o g as bicomodule algebras. Let r € k with
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f = fr. We claim that the right colinear isomorphism g,: An na3 — f'AN,a,ﬂ
is also left colinear. In fact

Nogr()=(H00AMy) = (/r®1)(10y+Y®r)=1Qy+rY ®z
=1Qy+Y ®rz=(1®g)A\)

and Mg, (z) =rX ® z = (1 ® g-)A(z). We have shown that v is onto, and that
the diagram in the theorem commutes.

Assume that g: Ay o g — AN is an isomorphism of bi-Galois objects.
By Theorem 2.2 we have ' = 3, g = g, for some r € k and o = r"a. Left
colinearity of g implies

1Qy+YQRz=X(¥) = (1®g-)A\p) =1Qy+Y ®rz

whence r = 1 and o = «, showing injectivity of .
To show that 4 is a group homomorphism, we need a homomorphism of Hy-
bicomodule algebras

8: AN,aot par+p = ANa,80Hy AN 6

which will automatically be an isomorphism because both sides are Hp-cleft
extensions of k. Now an algebra homomorphism

00! AN,aa’ Ba'+8 — AN,a,8 @ AN’ g
can be defined by §o(z) =z ® = and do(y) = 1 ® y + y ® z, since
Go(z)N = (z@2)¥ =2z" @z =ad/1®1,
G =(1ey+yen)V =10y" +yV @ = (f' +Ba)101
and
So(y)bo(z)=(1®y +y®z)(z®2)=q(z ®z)(1® Yy +y ® ) =qdo(2)d0(y).

It is easy to check that §y has its image in the cotensor product over Hy and
gives rise ta a left and right colinear map 4 as desired. |
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3. Hopf-Galois objects over tensor products

In this section we will be concerned with describing all Galois objects over a
tensor product of two Hopf algebras. We will prove a generalization of part of
a theorem of Kreimer, [6, Thm. 3.7], which says that the Harrison group of a
tensor product of two cocommutative Hopf algebras is

Gal(H; ® Hs) = Gal(H,) @ Gal(H2) & Hopf(H,, Hy).

Note that the group of Hopf algebra homomorphisms Hopf(H2, H}) can be identi-
fied with the group Pair(Hz, H;) of Hopf pairings H» ® H; — k. In this notation,
Kreimer’s isomorphism maps (A1, 42,7) to A1 ® A endowed with the obvious
right H; ® Hp-comodule structure and the multiplication defined by

(z@yY)(e' ®Y') = 27(ya), 2 1))z (0) ® Y(0)¥ -

We will generalize this description of Galois objects over tensor product Hopf
algebras to the non-cocommutative case (in which, however, there is no group
structure on Gal{H, ® Hz)).

To keep our results more general, we will, for this section only, assume that
k is any commutative ring; all Hopf algebras considered will be flat k-modules,
and Hopf-Galois objects will be faithfully k-flat by definition.

Recall that, for an H-comodule algebra A, a Hopf module M € M¥ is a right
A-module as well as right H-comodule whose module structure is an H-colinear
map: p(ma) = myay @ muyaq) fora € Aand m € M. If Ais an H-Galois
object, then Schneider’s structure theorem for Hopf modules [16, Thm. 3.7] gives
a category equivalence M = M; it takes a Hopf module to its submodule
of coinvariants, and it takes a k-module V' to V ® A with the obvious Hopf
module structure. In particular, the module structure of M € Mf induces an
isomorphism M“°H @ A — M.

Our first observation generalizes [6, Thm. 2.5 and Prop. 2.6.], where finite
projective Hopf algebras are considered. Let H = H; ® H, be a tensor product
of two Hopf algebras that are faithfully flat over k. Note that H; can be considered
as a Hopf subalgebra as well as quotient Hopf algebra of H. It is straightforward
to check that for any right H-comodule V one has

Vel = V(Hy)) = {veV|vg ®uuy € VR Hy} & VOgHy,

and vice versa.
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LEMMA 3.1: Let Hy, Hy be two k-flat Hopf algebras and H := Hy ® Hy. Let A
be an H-Galois object.
Then A; := A(H;) is an H;-Galois object for i = 1,2, and multiplication
induces an isomorphism
A(H,) @ A(Hy) = A

of right H-comodules.

Proof: In fact A; is an H;-Galois object and a faithfully flat k-module by [15,
Rem. 3.11]. Now consider A as a Hopf module in Mg;; then by the structure

theorem of Hopf modules [15, Thm. 3.7] multiplication induces an isomorphism
Atz @ Ay — A. (]

QOur next task is to describe, in the situation of Lemma 3.1, the algebra
structure on A; ® As resulting from that of A.

We first review the definition of skew pairings between Hopf algebras and the
way they give rise to Hopf algebra cocycles. This was studied in [4] with appli-
cations to the Drinfeld double and other quantum group constructions (however,
we switch the order of tensorands in a skew pairing).

Definition 3.2: Let L, H be two bialgebras. A skew pairing of L and H is a map
7: L ® H — k satisfying

T(@E” h) = T(& h(?))T(elv h(l))a

T(f, hh/) = T(f(l), h)T(ﬁ(z), h'),
and 7(£,1) = €(f), 7(1,h) = e(h) for all {,£' € L and h,h’ € H. A skew pairing

is said to be invertible if it is as an element of (L® H)*. The trivial skew pairing
is by definition € := erg .

Note that if H is a Hopf algebra then any skew pairing 7 L& H — k is
invertible with 77! = 7(idf, ®9).

Remark 3.3: Let 7: L ® H — k be an (invertible) skew pairing. Then 7 :=
e®7®e: (H®L)® (H®L) - k is an (invertible) two-cocycle.

As in [4] we denote the twisted Hopf algebra (H ® L) by H . L. Its
multiplication is given by (h < 1)(1 4 £) = h > £ and

(1 ] f)(h 1) = T(f(l), fz(l))(h@) 1 g(g))T—l(E(g), h(3)).
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LEMMA 3.4: Let A be an L-H-bicomodule algebra and o: L® L — k a two-
cocycle. Then k,[A], defined to be A with the multiplication

T-y:= U(fv(—l),y(—l))x(o)y(o)

is a right H-comodule algebra. If o is invertible, then k,[A] is an L% H-bicomodule
algebra.

The proof consists of straightforward computations.

Definition 3.5: Let L; be a Hopf algebra and A; a left L;-comodule algebra for
i=1,2. Let 7: Ly ® Ly = k be a skew pairing. Then we define A;#,4; =
k:[A; ® Ap]. If H; are also Hopf algebras such that A; are L;-H;-bicomodule
algebras, then Remark 3.3 and Lemma 3.4 imply that A;#. A, is an L; b, Lo-
H, ® Hj-bicomodule algebra.

For the following lemma, we will need some facts on the unique Hopf algebra
L(A, H) for which a given H-Galois object A is an L(A, H)-H-biGalois object. It
can be constructed as L(A,H) :=L:=(A® A)COH, which is a subalgebra of A®
A°P. We will use the notation ¢ = £ ¢ € A® A for an element ¢ € L. Then
the comultiplication of L is given by A(¢) = (5(1)(0)®€(1)(1)[1])®(E(1)(1)[2l®£(2)),
where for h € H we denote the image of 1® h under the inverse of the Galois map
k: A® A — A® H by h1@hl% € A® A. Note that hlIal2 = ¢(R). By [12, Lem.
3.2, Lem. 3.3] L can be characterized by a universal property: Any H-colinear
map 6: A - W ® A factors as (A ® f)A for a unique k-module map f: L - W.
If W is a coalgebra (algebra, bialgebra), then § is a comodule structure (algebra
map, comodule algebra structure) if and only if f is a coalgebra map (algebra
map, bialgebra map). In case V in the following lemma is finite projective, the
lemma is a consequence of these results of {12], otherwise it is a generalization.

LEMMA 3.6: Let H be a k-Hopf algebra and A an H-Galois object. Put L :=
L(A, H). Then for all k-modules V,W there is a bijection

3
Hom™ (V ® A, W ® A)= Homy(V @ L, W)
v
given by ®(a)(v®£&)®14 = a(v@EW)E? and ¥(1)(v®a) = T(v®a(_1)) ®a)-

Assume that W = k and let « and 7 satisfy o = ¥(7). If V is an algebra, then
a is a module structure if and only if r fulfills

(00’ @ &) = T(v ® §(2))T(v' ® €(y)
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forallv,v" € V and £ € L. If V is a coalgebra, then a is a measuring if and only
if T satisfies

(v ® €C) = T(v) @ &) 7(v(2) ® ()

for allv € V and €,{ € L. In particular, if V is a bialgebra, then o gives A the
structure of a V-module algebra if and only if 7 is a skew pairing.

Proof: From Schneider’s structure theorem [15, Thm. 3.7] for Hopf modules we
have the following bijection:

Homf (V@ A, W®A)=Hom,(VRA ®A,W®A)
& Homi((V ® A" ® A)°" W) = Homy(V ® L, W)
which is easily checked to have the claimed form. (In the calculation, we have

indicated module and comodule structures on tensor products by dots; in partic-
ular, the comodule structure on A'® A" means the codiagonal comodule structure

p(z ®Y) = o) ® Y(0) D T(1)¥(1)-)
From now on let W = k.
Assume that V is an algebra. If « is a module structure, then

(v’ ® £)14 = afvv’ ® £M)e?)
=a(v®a(v ® g(l)))§(2)
=r(v®av ® M) e®)1,
=@ o(v’ ®EW )¢V )W ) © )14
=1(w@ T ®&M ) @M )M B @ €)1,
=7(v® &)V ®€ny)la.

Conversely, if 7 fulfills this equation, then we have

(v @ a(v' ®a)) = a(v® T(v' ® a(_1))a())
= T('U ® a(_l))'r(v' ® a(_z))a(o).

Now assume that V is a coalgebra. If o measures, then

T ®&)1a =10t e(®®) o1
alve® §(I)C(1))C(2)5(2)

= a(v) ® €M)a(vg) @ ¢(W)¢Pe?
vy ® EM)EP (v ® ()
(v ®E)T(v(2) ® ()14

Il



Vol. 115, 2000 BI-GALOIS OBJECTS OVER THE TAFT ALGEBRAS 113

and conversely, if 7 satisfies this equation, then
a(v®zy) = T(v ® T(—1)Y(-1))T(0)¥(0)

(v ® 2(-1))7(v2) B Y(-1))Z(0)¥ o)
=a(vy ®T)a(vR(2y®y). N

PRrROPOSITION 3.7: Let Hy and H, be two k-flat Hopf algebras.

1. Let A; for i+ = 1,2 be H;-Galois objects, put L; := L(A;, H;) and let
7: Ly ® Ly — k be a skew pairing. Then A1#.,As is an H; ® Hz-Galois
object with L{(A1# A2, H1 ® Hy) = Ly b4, La.

2. Let A be a right H1® H;-Galois object. Then there are unique up to isomor-
phism H;-Galois objects A; for i = 1,2 and a skew pairing 7: L(A2, Hs) ®
L(Ay, Hy) — k, unique up to composition with coinner automorphisms of
L(AQ, HQ) and L(Al, Hl), such that A AI#TAZ-

Proof: To see that A1#,A; is a Galois object, one checks that the diagram
K
At Ay ® Arhe Ay — 222 L A4 A, @ Hi ® H)
o (23)

A1®AI ®AQ A A1 ®@H ® A, ® Hy

Ka, @ Ka,

commutes, where the right hand vertical arrow just switches tensorands, and «,
defined by

alz#y @ 2'#y') = z7(y(—1), 2 (1)) ® ' 0) Oy @Y,
is an isomorphism because 7 is invertible.
That A;1#.A, is a left Ly o<, Lo-Galois object follows from the commutative
diagram

7
KA #A,

Ar#,: A2 @ A1#, A Ly, Ly ® Ar#- A

(23) v

AIQRAI® A @Ay ———L1®A1 QL ® A

'
K, @Ky,

in which k%5: R® R — B® R denotes the left version of the Galois map for a left
B-comodule algebra R, and +, defined by

TERCRTR®Y) =£1)®z®((yT(C(2),€(2)) ®Ys
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is a bijection because 7 is invertible.

Note that the A; in 1. are uniquely determined up to isomorphism, since clearly
Ai = (Ar#, A2)(H)).

Now let A be an H-Galois object for H = H; ® Hy. From Lemma 3.1 we have
the isomorphism, induced by multiplication, A; ® Ay — A, with A; = A(H,).
Put L; := L(A;, H;).

We consider the category AZM;IZ of Hopf bimodules. By definition it consists
of right Hz-comodules and As-bimodules that satisfy the compatibility conditions
of a Hopf module in Mﬁi as well as 4, M2 The category Asz{j is a monoidal
category with the tensor product over A;, endowed with the obvious Az-bimodule
structure and the codiagonal Hs-comodule structure. In [13] we have proved
that ( MMZ,E, ®a4,) = (1, M,®) as monoidal categories. The equivalence maps
a left Ly-module V to the right Hopf module V ® A, with the left A;-module
structure (v ®y) = £(_1)-v®x(g). The inverse isomorphism maps M € AZMZ;
to M2 with the L(Aj, Hy)-module structure £ - m = £Mme?), Consider A
as an Hj-comodule algebra. Then As is a subcomodule algebra, which means
that A is an algebra in the monoidal category AZMZI: It follows that there
is a unique left Lo-module structure on A; making it an Ls-module algebra,
for which the multiplication on A satisfies (zy)(z'y’) = z(y(-1) - ")y(o)¥’ for
z,’ € A, and y,y/ € Ay. This left Ly-action is given by £z = £(Dzf(?)
hence is Hi-colinear as a map Ly ® A; =& A;. Lemma 3.6 applies to yield a
unique skew pairing 7: Ly ® Ly — k with £ -z = 7(£, T(_1))2(0), hence Tyz'y’ =
z7(y(—1), ¥ (-1y))T" (—1)Z(0)Y(0yy’ for all 2,2’ € A; and y,y’ € Ao

Now assume that we have another skew pairing x: Ls ® L1 — k and an iso-
morphism f: A > A;#,As. By restriction, f induces automorphisms f; of 4;
with f(zy) = fi(z)#f2(y) for z € A, and y € A,. By the universal property of
L;, there are algebra maps u;: L; = k with fi(a) = ui(a(—1))a) for all a € A;.
It follows that

yz' =fH(f) f(@) = FHua(yn)u (e’ 1) 1#y0)) (2 () #1))
= up(y(—2))w (& (—2))X(¥(1), &' (1)} (€' 0 #Y(0))
=ua(y(—a))ur (' (—3))xW(-2), T’ (~2))u1 (&' <1z (¥(1)T ) ¥(0)
= (x o (coinn(uz ') ® coinn(uj 1)) (y(-1) ® ' (-1))%’ (0)¥(0)
for y € A, and 2’ € Ay, so that x o (coinn(u; ) ® coinn(u; ')) = 7 by uniqueness.

Conversely, if x := 7 o (coinn(uz) ® coinn(u1)), then essentially the same
calculation shows that f: A — A;#, A2, defined by

f(zy) = ur(z (1)) (y(-1))T©0)#Y(0)s
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is an isomorphism of H-comodule algebras. 1

In general it is hard to say what the group BiGal(L; ® Lo, H; ® Hz) of bi-Galois
objects between two tensor product Hopf algebras is. However, we can note the
easy observation:

Remark 3.8: Let H;, L; for i = 1,2 be Hopf algebras. Then we have an injective
map
BiGal(Ll,Hl) X BlGal(Lz, H2) e B1Gal(L1 &® Lg, H1 ® HQ)
(Al,A2) > A] ® A2

which is a group homomorphism if L; = H; for ¢ = 1, 2.

4. Galois and bi-Galois objects over the general Taft algebras

We return to the case that k is a field containing a primitive N-th root of unity
q. We will determine all Galois and bi-Galois objects over the Taft algebras with
more than one grouplike generator. These are defined [16] to be

Hym =k(Xo, o, X1, V) /(XN -1, YV Y X, — ¢XiY)

with grouplike elements X; and (1, Xq)-primitive Y.

We let Cn denote the cyclic group of order N. The group algebra kCy has
commuting grouplike generators X, ..., X, with defining relations XN = 1. It
is a selfdual Hopf algebra, with the isomorphism D: kCF 2 (kCF})* determined
by D(X;)(X;) = ¢*).

We can use the results from the preceding section to compute Galois objects
over Hy ., in view of the following simple observation (that may well be known):

LEMMA 4.1: There is an isomorphism of Hopf algebras
I HN,m+1 = kCﬁ ® Hy

determined by f(Xo) =1® X, f(Xi)=X;® X fori > 1l and f(Y)=1QY.

Hence, instead of the Taft algebras Hy ., we can consider the tensor product
Hopf algebra kC @ Hy. We will write Xo:= X :=1® X and X;:= X;® L.

Let us first fix some notations. In the following, in all sums and products the
index runs through 1,...,m. In a noncommutative ring, products will be taken
in ascending order of the indices from left to right.

We will abbreviate GL,, := GL,,(Z/(N)). This group acts naturally by right
matrix multiplication on G™ for any Z/(N)-module G. If G is a multiplicative
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abelian group of exponent a divisor of N, then this right action reads @ — 1" =
(I, a;-""),- for a = (;) € G™ and T = (t;;) € GL,.

We denote by Skew,, := Skew,,(Z/(N)) the set of all skew symmetric matrices
R = (ri;) € M,,(Z/(N)), i.e. of matrices that satisfy r; = 0 and r;; = —r;; for
all 4, 7. The abelian group Skew,, has a right GL,,-action defined by R —~ T =
> k.0 Tketkite;)i ;- (The group Skew,, is naturally isomorphic to the dual group
(A2(Z/(N))™)" of the exterior square of (Z/(N))™. With this identification, the
right action of GL,, is the dual of the canonical left action on A%(Z/(N))™.)

We will now describe the groups of Galois and bi-Galois objects over kC7%;.

LEMMA 4.2: The map
Skew.,, ®(k/EM)™ > (R, @) — Bra € Gal(kCy)

defined by
Bra = k{z1, .. ,ar:m)/(acfV — 0, %% — T T)

with the right kC%}-comodule algebra structure determined by p(z;) = z; @ X;
is an isomorphism of abelian groups.
If N is odd, then the map

GLn(Z/(N)) x (Skewm ea(ic/icN)m) = BiGal(kCT)
(T, R, a) = BT,RYQ

defined by Br r.a = Br,a as right comodule algebras with left comodule structure
defined by

/\(.’Bz) = HX;J' & x;
J
is a group isomorphism.

Proof: The description of Gal(kCF}) is probably well known. We will sketch how
to deduce it from Kreimer’s result cited at the beginning of the preceding section.
First, consider a kCn-Galois object A. This is a strongly graded ring, and has
a normal basis, so it is easy to see that it has the form A = k[z]/(z" — ) for
some a € k. Any isomorphism k[z]/(zN — a) — k[z]/(z" —o') maps z to Az for
some A € ic, and one checks that z — Az extends to a well defined isomorphism
iff @ = ANo/. This is the desired description of Gal(kC};). By induction over [6,
Thm. 3.7), using Pair(kC%, kCx) = Pair(kCy, kCx)® = (Z/(N))¢, one obtains
an isomorphism

Gal(kCR) & Gal(kCn)™ @ (Z/(N))™m-1/2.
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Identifying (Z/(N))™™~1/2 with Skew,, yields the claim on Gal(kC).
In {12, Lem. 4.7} we have shown that there is an isomorphism

Autyopt (H) X Gal(H) > (f, A) = / A € BiGal(H)

for any cocommutative Hopf algebra H; the action of Autpeps(H) on Gal(H)
is given by A — f = Af ~'. In our case, we clearly have Autpopt(kCF) =
GL(Z/(N)). We choose the identification

GLm(Z/(N)) 5T Fre AutHopf(k)CITVn)

—1

given by Fr(X;) = [[; X;-j*. Assume N is odd. We have to show Bf;Ta =
Bre a1 and Fr Bra = Br pa- The latter is straightforward, the former is
proved by considering the isomorphism

Fol
GT2 BR,_T,QI_T — BRTa

determined by Gr(z;) = [I; :r;.“.

To see that this is really well defined, one needs the follewing fact: Let a,b be
elements in a k-algebra R satisfying ba = uab for some u € k. Then one proves
by induction that (ab)V = uzNW-1gNpN 5o that, if N is odd and u is any

N-th root of unity, then (ab)¥ = a™VbV. |

LEMMA 4.3: For every r € (Z/(N)Y™ there is a unique skew pairing
™ Hy ® kC% — k with (X, X;) = ¢ and 7(Y,X;) = 0 for all i.
Every skew pairing : Hy ® kC% — k equals 7 for a uniquer € (Z/(N))™.

The proof is immediate, since a skew pairing 7 is the same as a Hopf algebra
homomorphism Hpy — kC% in view of the self-duality of kC7;, and there is no
noncentral skew primitive element in kCF;.

For the following application of Proposition 3.7, note that the coinner auto-
morphisms of Hy fix X, hence do not affect the skew pairing 7, while kC7} has
only trivial coinner automorphisms.

COROLLARY 4.4: There is a bijection
(Z/(N))™ x Skew,, x(k/kN) x k x (k/kN)™ — Gal(kCy @ Hy)
(R,r,00,8,0) » TRr a0 p8a
defined by

TR .ra0,8,0 “=BRa#rAao,8

gk("EO’ <oy Tmy, y)/(va - ai,yN - ,37ymi - qaiomiyazjxi - qrijzizj)
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where we have put v := 1 and ro; := r; =: —r;0. The right comodule algebra
structure is determined by p(z;) = z; ® X; and p{y) = 1Y +y ® X.

Proof: One only has to check that z; := z;#1 has the indicated commutation
relations with zg 1= 1#xzo and y := 1#y in the twisted product. We have
(L#zo)(z:#1) = 7e(Xo, Xi)zidtwo = ¢~ " (z:#1) (14£20)

and
(A#y)(zi#l) = 7e(1, Xo)zidty + (Y, Xo)zi#zo = oty = (z:#1) (1#y). B

We know by Proposition 3.7 that since L{A, Hy) & Hy for any H y-Galois object
A and L(B,kCy) = kCF; for any kC3-Galois object B by cocommutativity of
kC?T, we have L(A,kCy @ Hy) = kCY <, Hy for a suitable skew pairing 7, for
all kCJ ® Hy-Galois objects A.

LEMmMA 4.5: Letr € (Z/(N))™. There is a Hopf algebra isomorphism
kCy >, Hy 2 kCY ® Hy
Xixle X, ® Xp'
1 Xy~ 1® Xy
IxY—1RY.
Proof: InkC%®Hy we have (10Y)(X;®X7') = X, QY X' = Xi®q" X;'Y =
(X, @ Xg)(1QY). In kC} <, Hy we have
(1Y) (X; 1) = 7(1, Xi) X, o2 177 1Y, X5)
+ (1, X)X Y771 (X0, X;)
+ 7 (Y, X)X va Xo7,7 (X0, Xi)
=q"(X;>x1)(1Y).
We omit the rest of the proof. n

COROLLARY 4.6: Every right kCYt ® Hn-Galois object has the structure of a
kCF ® Hn-kCF ® Hy-bi-Galois object. For every two-cocycle o on kCy ® Hy
we have (kCR @ Hy)? = kCR ® Hy. The isomorphism class of the Hopf algebra
kC% ® Hn (the Taft algebra) is uniquely determined by the k-linear monoidal
category of its comodules.

In particular, we can choose the left comodule structure A on I'r; og.8.e
determined by A(xg) = Xo @ z¢, A(y) = 1@y +Y @z and

Mzi) = X' X; @
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for i > 0 to make it a bi-Galois object.

After choosing a bi-Galois structure for each Galois object, all possible ones
are obtained by twisting the left comodule structure with a set of representatives
for the coouter automorphism group of kC3. We will also want to determine the
group structure of BiGal(kC ® Hy), at least for odd N. To do this, we first
need some more facts and notations:

1. The group (Z/(N))™ acts on the group (k x k) x (k/kN)m by

(Ol(),,B,a) —r= (aﬂv /87 (aiagi)i)'
2. Letting GL,, act trivially on kx k, we get an action of GL,, on (Ic x k) x
(k/kN).
3. The action of (Z/(N))™ on (k x k) x (k/kN)™ is GL,,-equivariant, that is

(a0, 8,0) =) = T = ((a0, f,@) = T) — (r <= T)

holds for all T € GLyy,, r € (Z/(N))™. This ensures that we get a right
action of GL,, X (Z/(N))™ on (k x k) x (k/kN)™ defined by £ — (T,r) =
(¢ —T) «—r for £ € (k x k) x (k/EM)™.

4. The map

wo: (Z/(NY)™ x (Z/(NY)™ 3 (r, X)) — (Tir; —rTi)i,; € Skew,,

is biadditive, hence a two-cocycle on the group (Z/(N))™ with values in

the trivial module Skew,,. The map wy is GL,-equivariant, wo(r,r’) —
T = wo(r — T,v' — T), whence w((T,r), (T",r')) := wy(r — T",1’) defines
a two-cocycle on GL,, X(Z/(N))™ with values in Skew,,.

THEOREM 4.7: Assume N is odd. An isomorphism
U: (GLy X (Z/(N))™) %, (Skewm x (k ¢ k) x (ig/icN)m) — BiGal(kOT ® Hy)

is given by ¥((T,r),(R,(00,8),@) = Arr ReoB.a ‘= I'rRao8a as a right
kC¥ @ Hy-comodule algebra, with the left comodule algebra structure deter-
mined by Mzg) = Xo ® 20, AM(y) = 1®y+Y ® 10 and

Mzi) = Xg' [[ X7 @ =
J
for i > 0.

Proof: For a general Hopf algebra H, let G be a set of H-H-bi-Galois objects
whose underlying right H-Galois objects are a representative system for Gal(H),
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and let F be a representative system for CoOut(H). Then by [12, Lem. 3.11.]
we have a bijection

FxG>3(0,A) — °AcBiGal(H).

For r € (Z/(N))™, R € Skewn,, 8 € k, g € k and a € (k/kN)™ we define
J(r, R, a0, 8,0) := Tt R ao,8,e With the left comodule algebra structure satisfying
Azo) = Xo ® zo, Mz;) = X' X; @z fori >0and My) =1Qy+Y ® z¢.

Choose a representative system A for k / kN . Then

J: (Z/(N))™ x Skewn, x A x k x (k/EV)™ = BiGal(kCJ} ® Hy)
is injective and yields a bijection when composed with the forgetful map
BiGal(kCY ® Hn) = Gal(kCy ® Hy).
It is straightforward to check that the canonical map
Autgopt (kCR) X CoOut(Hn) — CoOut(kCY @ H)
is a bijection. Hence, choosing a representative system S for k/(g), the map
J't GLy, xS x (Z/(N))™ x Skew,, x.A x k x (k/EN)™ — BiGal(kCP @ Hy)

given by J'(T,v,r, R, ap, 3,@) = @5 J(r, R, ag, 3, @) is a bijection. Similarly
to the proof of Theorem 2.5 one shows that there is an isomorphism of kCPQ H -
bicomodule algebras

J(r,R,oNag, B,@) - ¥ I (r, R, 0, 8, @)
T > Vg
;> x; fori>0

Y=y
Since S x A 3 (v,a) = vNa € k is a bijection, we obtain a bijection
U: GL,, X(Z/(N))™ x Skew,, xk x k x (k/EN)™ = BiGal(kC ® Hy)

by setting
‘II(Ta r, R7 Qp, ﬁ1 a) = FT@idJ(rv R7 ag, 137 a);

which clearly has the form indicated in the formulation of the Theorem.
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It remains to verify that ¥ is a group homomorphism. Let T,T7' € GL,,,
r,v' € (Z/(N)™, R,R' € Skew,,, 8,0’ € k, ap, 0 € k and a,a € (k/k”)m. Set
T =TT, v :=r T +71,

"o 2 : ., E : . r o ’
T'I;j = T}Cftk;tg‘? + (T}gtkz'r] - Tktk]'rz) + T%‘j’
k£ k

r! t,
" = Pag+ B, of = apap, and o = oy (HJ a/ ) o, We have to check
AT”,r",R“,a{)’,ﬁ”,a“ = AT,F,R,CEO,BJIDICC',\',I@HN AT',r’,R’,ag,ﬁ’,a’-

We can define an isomorphism ¢ by §(z;) = :cgi I z;"" ® z; for i > 0, d(zo) =
To ® To, and 6(y) = 1Q y+ y ® xo.
In fact &(x;) is in the cotensor product because

p(zy [T 7) ® 2 = (20 ® Xo)™ [ (25 ® X;)15 @ 2
; :

3
r! t; 7] t, ! s
=z} H:s]? ® Xy HXj” ® T; = Ty’ H:sj” ® A(zi).
7 J b
For ¢ > 0 we have

s = (o) [[27 @ 20N = @) [[e)% © 2l = ap [[ef a1 @1),
i J i
using again that for any elements a,b € R of a k-algebra R satisfying ba = uab
for some N-th root of unity in k, we have (ab)N = a™Vb". Moreover, for i,j > 0

! ’ ! !
0(z;)0(x;) = (mgj wafj ®xj) (mg" Hwi : ®:r,-)
e k
( t;) ( f;.)

=z er’ zy' H:ck’” ® ;T4
¢ k

= q(rij‘i-ze Toty;ri) .’ES;CL'g: (H z?]‘) (H z;h) ® Tz,

[ k

(TiﬁZ,thZjTHZk,ﬂket;itL—)
r/. 'I‘,- t’. tl-
k £
_ q(rij+ze T‘t;jr“'i+2k,e ""clt;cit’lj—z rktkjr;)

! th . ' t;~
X gt Ha:k’“ zy H.’L‘g 7 @ Ty
k [4

= g™ 6(z:)d(;).

=4q
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We omit the remaining details showing that J is a well defined bicomodule algebra
homomorphism. It is then an isomorphism since its domain and codomain are
Galois objects. |

COROLLARY 4.8: If N is odd and k is algebraically closed, then
BiGal(kCT ® Hy) = ((GLy, X(Z/(N))™) X, Skew,,) x (k % k).
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