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ABSTRACT 

Let k be a field. We study the groupoid of Hopf bi-Galois objects, whose 

objects are k-Hopf algebras, and whose morphisms are L-H-bi-Galois 
extensions of k for Hopf algebras L and H. 

We show that  if H = HN, m is one of the Taft algebras, then L ~ HN,,~ 
in any L-H-bi-Galois object. We compute the group of bi-Galois objects 

over the two-generator Taft algebras HN, 1. We classify the isomorphism 

classes of Galois extensions of k over the general Taft algebras HN,m, and 

we compute the groups of bi-Galois objects over HN,m for odd N. 

Our computations for the two-generator Taft algebras rely on Masuoka's 
classification [9] of their cleft extensions. To treat the general Taft 

algebras, we will generalize a result of Kreimer [6] to give a description 

of the Galois objects over a tensor product of two Hopf algebras. 

1. I n t r o d u c t i o n  

Hopf-Galois extensions were introduced by Chase and Sweedler [1] (for the com- 

mutative case) and Kreimer and Takeuchi [8] as a generalization of the Galois 

theory of rings [2], in which the action of the Galois group is replaced by the 

coaction of a Hopf algebra. By definition, an H-Galois extension A of a sub- 

algebra B over a Hopf algebra H is an extension of algebras in which A is a 

right H-comodule algebra via the coaction p: A -~ A | H, the algebra B is the 

algebra of coinvariants A e~ := {a E A[ p(a) = a | 1}, and a certain canonical 

map hA: A | A -+ A | H is a bijection. In the present paper, only H-Galois 
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extensions of the base field k are considered; we will call them H-Galois objects 

for short. 

If H is a finite dimensional cocommutative Hopf algebra, then the isomorphism 

classes of H-Galois objects form a group by [5]. Composition in this group is the 

cotensor product over H, and if H is the group algebra of a commutative group, 

then the Harrison group is a subgroup. The construction of a cotensor product 

Galois object from two H-Galois objects fails if H is not cocommutative. The 

situation can be amended by considering additional structures. By definition 

an L-H-bi-Galois object A, for two Hopf algebras H and L, is a right H-Galois 

object, as defined above, as well as a left L-Galois object (involving a left coaction 

A -~ L | A) in such a way that the two coactions make A an L-H-bicomodule. 

Now, given three Hopf algebras L, H, and R, an L-H-bi-Galois object A, and an 

H-R-bi-Galois object B, one can form the cotensor product A[]HB, which is an 

L-R-bi-Galois object. In this way, one obtains the groupoid of bi-Galois objects, 

whose objects are Hopf algebras, and whose morphisms are isomorphism classes 

of bi-Galois objects, with the cotensor product as composition [12]. As a special 

case, the isomorphism classes of H-H-bi-Galois objects form a group BiGal(H); 

this special case was discussed in [17]. 

A bi-Galois structure is in fact no additional requirement of a Galois object: 

Whenever A is an H-Galois object, there is a unique Hopf algebra L = L(A, H) 
associated to it such that A is in fact an L-H-bi-Galois object (see [12], gener- 

alizing the commutative case treated by Van Oystaeyen and Zhang [17]). The 

construction L(A, H) generalizes the double twist of a Hopf algebra by a two- 

cocycle, as introduced by Doi [3]. The motivation in [17] is that the additional 

structure of a bi-Galois extension that comes automatically with every Galois ob- 

ject admits the formulation of analogues of the Fundamental Theorem of Galois 

Theory for Hopf-Galois objects (see also [12, 14] for more general versions). 

In the present paper we compute explicitly for an interesting class of Hopf alge- 

bras the group BiGal(H) of bi-Galois objects. The Taft algebras were introduced 

[16] as an early nontrivial example of a noncommutative non-cocommutative Hopf 

algebra. The Taft algebra HN,m is generated by m grouplike and one skew prim- 

itive element, using a primitive N-th root of unity in the commutation relations 

between grouplikes and the skew primitive. The two-generator Taft algebras 

HN : HN,1 occur as building blocks in the finite quotients of quantized envelop- 

ing algebras at a root of unity. 

Masuoka [9] has classified all cleft extensions over the two-generator Taft al- 

gebras. Using his results we compute, in Section 2, all bi-Galois objects over 
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the two-generator Taft algebras. We find that in any L-H-bi-Galois object with 

H = HN, we also have L "~ HN. Equivalently, every double twist of HN by 

a two-cocycle is isomorphic to HN. We compute the group BiGal(HN) to be 

isomorphic to the semidirect product ]~ ~< k, where ]~ denotes the muttiplicative 

group of the base field. 

In Section 3 we generalize partly a theorem of Kreimer [6, Thm. 3.7] that  

describes the group Gal(H1 | H2) of Galois objects over the tensor product of 

two finitely generated projective cocommutative Hopf algebras H1 and //2 (in 

Kreimer's paper, as well as in Section 3, k is a commutative ring rather than, in 

the rest of the paper, a field). Taking away the statement on the group structure 

of Gal(H1 | H2), Kreimer's result says that every Galois object over H1 @//2 

can be built up uniquely (up to isomorphism, of course) from Galois objects A/ 

over H / f o r  i = 1, 2 and a Hopf algebra pairing H1 | H2 -+ k. We can carry this 

result over to the non-cocommutative case by taking into account the structure 

of a bi-Galois object that  every Galois object carries naturally by [12]: If H1 and 

/42 are two (not necessarily cocommutative) Hopf algebras, every Galois object 

over H1 |  can be built up from Galois objects Ai over H~ for i = 1, 2, and a 

skew pairing L(A2,//2) | L(A1, H1) -+ k. One can also compute the bi-Galois 

structure of the Galois object obtained in this way. 

The results of Section 3 are put to use when we compute the Galois and bi- 

Galois objects over the general Taft algebras in the last section. In fact it is 

easy to see that the Taft algebra HN, m is isomorphic to the tensor product Hopf 

algebra kC'~ -1 | HN, where CN denotes the cyclic group of order N. Again, 

we find that  in every L-H-bi-Galois object with H = HN,m we have L "~ HN,m 
as well; equivalently, every cocycle double twist of HN,m is isomorphic to HN,m. 
We compute the group BiGal(HN,m) of bi-Galois objects over the general Taft 

algebras to be isomorphic to 

(GLm-I(Z/(N)) ~, (Z/ (N))  m - l )  ~<w (Skewm_l(Z/(N))  x (]r ~< k) x (]~/]~g)m-1) 

for suitable actions and a suitable group cocycle w. Here we denote by 

Skewm_l(Z/(N)) the additive group of skew symmetric (m - 1)-by-(m - 1) 

matrices with zero diagonal. 

PRELIMINARIES AND NOTATIONS. We collect some conventions as well as back- 

ground material on Hopf-Galois and bi-Galois extensions. 

Throughout  the paper (except in Section 3) k denotes a fixed base field, and ]r 

denotes its unit group; algebras, tensor products, coalgebras etc. are over k. We 

use Sweedler's notation for comultiplication in the form A(h) = h(1) | h(2). We 
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use the notations p(v) -- v(0) | v0) for the comodule structure p: V --+ V | H of 

a right H-comodule. We use A(v) -- v(-1) | v(0) for a left H-comodule structure 

A: V --+ H @ V. For a right (resp. left) H-comodule V over a bialgebra H we 

denote by 

Y c ~ 1 4 9  I p ( v ) = v @ l }  (resp. r 1 7 6 1 4 9  I A ( v ) = l |  

the subspace of right (resp. left) coinvariant elements. A (right or left) H- 

comodule algebra for a bialgebra H is a (right or left) H-comodule and algebra 

A, so that the comodule structure is an algebra map. The right H-comodule 

algebra A is said to be an H-Galois extension of its subalgebra B if B = A c~ 

and the map aA: A | A -+ A | H given by gA(X | y) = Xy(o) | Y(1) is a 

bijection. An H-Galois extension of the base field k will be called an H-Galois 

object for short. A left H-Galois object is a left H-comodule algebra A such that  

c~ = k and a': A @ A ~ H | A with a ' (x | y) = X(_l) | X(o)y is a bijection. 

An L-H-bi-Galois object for Hopf algebras L and H is a left L-Galois object as 

well as right H-Galois object A such that the left and right comodule structures 

make A an L-H-bicomodule. If A is a right H-Galois object, then there is a 

unique Hopf algebra L = L(A, H) such that A is an L-H-bi-Galois object. If A 

is an L-H-bi-Galois object and B is an H-R-bi-Galois object for Hopf algebras 

L, H, and R, then the cotensor product 

as an L-subcomodule, R-subcomodule, and subalgebra of A | B, is an L-R-bi- 

Galois object. Bi-Galois objects form a groupoid with Hopf algebras as objects, 

isomorphism classes of bi-Galois objects as morphisms, and cotensor product as 

composition. In particular, the isomorphism classes of H-H-bi-Galois objects 

form a group BiGal(H) for every Hopf algebra H. 

A right H-comodule algebra A is said to be clef t  if there is a convolution 

invertible right colinear map (I): H ~ A. A cleft right H-comodule algebra with 

ACO g = k is a right H-Galois object; the converse is true if H is finite dimensional 

[7]. 

For a Hopf algebra H, we denote by AUtHopr(H) the group of its Hopf algebra 

automorphisms. For an algebra map u �9 Alg(H, k) we denote by coinn(u): H -+ 

H the coinner automorphism of H induced by u, that is, 

coinn(u)(h) = u-l(h(1))h(2)u(h(a)), 

where u -1 = uS denotes the convolution inverse of u. The set CoInn(H) :-- 

{coinn(u)l u �9 Alg(H, k)} of coinner automorphisms of H is a normal subgroup 
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of Autnopf(H); we call the quotient CoOut(H) := AUtHopf(H)/Colnn(H) the 

co-outer automorphism group of H. For a left H-comodule V and a coalgebra 

map f :  H -~ H we denote by fV the vector space V with the left H-comodule 

structure v ~ f (v(_l))  | v(0), where v ~ v(-1) @ v(0) denotes the original H- 

comodule structure of V. A group homomorphism AutHopf(H) --+ BiGal(H) is 

given by f ~-~ IH.  By [12, Lem. 3.11] this induces an injective homomorphism 

I: CoOut(H) -+ BiGal(H).. 

L e t  H be a Hopf algebra. A two-cocycle on H is a map a: H |  --+ k satisfying 

o(f(1), go) )a ( f  (2)9(2), h) = a(9(1), h(1))a(f, g(2)h(:)) 

and a(h, 1) = a(1, h) = 1 for all f ,  9, h E H. If a is a (convolution) invertible 

two-cocycle, then Doi [3] constructs a double twisted Hopf algebra H * which is 

H as a coalgebra with multiplication g.  h = a(g(1), h(1))g(2) h(2) a -1 (9(3), h(3)). 

The right H-comodule algebra k,,[H] := k#~,H is defined to be H with multi- 

plication defined by g. h = a(g(1), h(1))g(2)h(2). It is an H*-H-bicomodule algebra 

via the comultiplication of H. If a is a convolution invertible two-cocycle, then 

k~,[H] is an H-cleft extension of k. One has L(k~,[H],H) ~ H ~'. 

2. Bi-Galois  ob jec t s  over  t he  two-gene ra to r  Taf t  algebras 

Let N > 1 be an integer, and assume that k contains a primitive N-th root of 

unity q. We denote by (q) the multiplicative group of N-th roots of unity in k, 

which is generated by q. The two-generator Taft algebra [16] is 

HN = HN,q := k(X,  Y ) / ( X  N - 1, y N ,  Y X  - qXY) .  

It is a Hopf algebra with grouplike X and (1, X)-primitive Y; that  is, comulti- 

plication is given by A(X) = X | X and A(y)  = 1 @ Y + Y | X, the counit 
is given by E(X) = 1 and e(Y) = 0 and the antipode is given by S ( X )  = X N-1 

and S(Y)  = - - q - I X N - 1 y .  A k-basis of H/v is { X i y j l  0 <_ i < N, 0 <_ j < N} .  

The set of grouplike elements of HN is G(HN) = {1,X, X2 , . . .  , x N - 1 } .  For 

any i , j  with j ~ i + l modN,  all (Xi,XJ)-primitives are trivial (multiples of 

X i - x J ) ,  while the set of (X i, XJ)-primitives is Px,,xJ = k ( X  ~ - X j) �9 k X  iY  

for j - i + l m o d N .  (See [11, Expl. 1.4] and [10, Lem. 16.110 

LEMMA 2.1: We have a group isomorphism 

qo0: k ~ r ~ fr  C AUtHopf(HN) 

where f~(X)  = X and f~(Y) = rY.  



106 P. SCHAUENBURG Isr. J. Math. 

Moreover, A l g ( H N , k )  = {u~] r e (q)}, where u~(X)  = r and u~(Y)  = O. For 

r �9 (ql we have ~0(coinn(u~)) = fr,  so that ~Oo induces an isomorphism 

~: ]~/ (q) -+ CoOut (Hg) .  

Proof'. Since X is the unique grouplike admitt ing a nontrivial (1, X)-primitive,  

it is fixed by any Hopf algebra automorphism f .  Moreover, f ( Y )  is a nontrivial 

(1,X)-primit ive,  hence f ( Y )  = r Y  + t ( X  - 1) for some r �9 ]r and t �9 k, and 

0 = f ( Y X  - q X Y )  = f ( Y ) Z  - q X f ( Y )  = t(1 - q ) ( X  - 1)X, whence t = 0. The 

remaining assertions are straightforward to check. | 

The following is a special case of [9, Prop. 2.17, Lem. 2.19]: 

THEOREM 2.2: 1. For a �9 ]r and 13 �9 k the algebra 

Aa,~ := AN,~,~ := k ( x , y ) / ( x  N - a , y  g - 13,yx - qxy) 

. 

3. 

is a cleft right HN-Galois  object with right comodule structure p = p~,z 

defined by p(x)  = x | X and p(y) = 1@ Y + y | X .  A right colinear 

convolution invertible map ~: PIN --+ AN,~,Z is given by O ( X i Y  j)  = x i y  j 

for O < i < N a n d 0  < j  < N. 

A n y  right HN-Galois  object is o f  the form described in 1. 

The  set Alg H~ (AN,~,,~,, AN,a,~) o f  comodule algebra homomorphisms  (all 

o f  which are necessarily isomorphisms) is e m p t y  i f /3 ~ 13~. I f  13 = 13r, it 

consists precisely o f  the gs for s E ]r with a ~ = sNa ,  where gs(x) -- sx  and 

g (y) = y .  

DEFINITION AND LEMMA 2.3: Let  a E ]~ and 13 E k. Then  AN,a,[3 is an HN-  

bi-Galois object  with the right comodule  structure defined above and the left 

comodule  s tructure ~ = A~,t~ defined by A(x) = X | x and A(y) = 1 | y + Y | x. 

Proof: Tha t  ,~ is well defined is proved in the same way as that  p is well defined 

(or the comultiplication of HN is): For any elements a, b of a k-algebra R we 

have 
ba = qab ~ (a + b) g : a N + b g 

which shows that  (1 | y + Y | x) y = t3, while ( X  | x) N = a is obvious as well 

as ( l | 1 7 4 1 7 4  = q ( X | 1 7 4  That  A := AN,~,~ is 

an HN-bicomodule is easy to check. To see that  it is left Galois, it is enough 

to show that  the left Galois map ~t = (HN | V)(A | A): A @ A --+ HN | A is 

surjective. For this in turn it is enough to check that  for each h in a generating 
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set Of HN there is )-~.xi| E AQA with t d (~  xiQyi) = h@ l. Indeed, if we have 

xi | ~ x~ | e A |  with ~ ' ( ~  xi |  = h|  1 and t d ( ~  x~ | = g| 1, 
I then n ' (~x ix~  | = hg| 1, and for a E A we have h |  = n'(~-~xi | 

Now X | 1 = n'(x | x -~) and Y | 1 = n'(y | x -~ - 1 | yx -~) completes the 

proof. II 

By [12, Thm. 3.5] there is, for any right H-Galois object A, a unique up to 

isomorphism Hopf algebra L(A, H) such that A is an L(A, H)-H-bi-Galois object. 

COROLLARY 2.4: Fox" any right HN-Galois object A we have L(AN,a,B,HN) 
HN. For any invertible two-cocycle a: HN @ HN -+ k we have H~v TM HN. 

The Hopf algebra HN is determined up to isomorphism by the k-linear monoidal 

category of its comodules. 

The first assertion is contained in the preceding lemma. For an invertible 

cocycle a we have H~v ~ L(k#~HN,HN) by [12, Thm. 3.9]. By Theorem 

2.2 we have k~aHN -~ AN,a,~ for suitable a,/3, and by Lemma 2.3 we have 

L(AN,c,,~, HN) ~ HN. If H' is a Hopf algebra whose category of comodules is 

equivalent as a monoidal category to the category of HN-COmodules, then there 

is an Hr-HN-bi-Galois object by [12, Cot. 5.7.], whence H' -~ HN. 

THEOREM 2.5: The map 

r ]~ x k > BiGal(HN) 

(a, j3), > [AN,a,~] 

is a group isomorphism. The diagram 

CoOut(HN) I �9 BiGal(HN) 

Jc/(q) I' ' j~ K k 

commutes for I '([r]) = (r n, 0). 

Proof: Let A be any HN-bi-Galois object. By Theorem 2.2 we can assume 

that  A = AN,a,~ as a right HN-Comodule algebra, with a suitable left comodule 

structure At. By [12, Thm. 3.5] there is a unique automorphism f :  HN ~ HN 

with ( f  | 1)A = AP, that  is, A -- fAN,~,Z as bicomodule algebras. Let r E ]r with 
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f = fr- We claim tha t  the right colinear isomorphism g,:  AN,~,~,Z -4 lrAN,a,~ 

is also left colinear. In fact 

Atg,.(y) = (f~ @ 1)A(y) -- (f~ @ 1 ) ( 1 |  + Y |  = 1 |  r Y  |  

= 1 @y + Y  @rx = ( l |  

and Atgr(x) = r X  | x = (1 | gr)A(x). We have shown that  ~b is onto, and tha t  

the d iagram in the theorem commutes.  

Assume tha t  g: AN,a,,13, ~ AN,a,O is an isomorphism of bi-Galois objects. 

By Theorem 2.2 we have fit = /3, 9 = g~ for some r E /r and a t = r n a .  Left 

colinearity of g implies 

l @ v + Y |  = Ag, . (y)= ( l @ g r ) A ( y ) =  l | 1 7 4  

whence r = 1 and a t = a ,  showing injectivity of r  

To show tha t  r is a group homomorphism,  we need a homomorphism of HN- 
bicomodule  algebras 

~: AN,c,a',t3a' +O' -'+ AN,c*,I31-3 HN AN,c*',O' 

which will automat ical ly  be an isomorphism because both  sides are HN-cleft  

extensions of k. Now an algebra homomorphism 

60: AN,aa',Oa' +l~' -+ AN,a,/3 @ AN,a',O' 

can be defined by 6o(X) = x | x and 50(Y) = 1 | y + y @ x, since 

(50(x)) N = ( x .  x)N = x N .  = a a ' l  | 1, 

and 

(6o(y) ) N = (1 | y + y | x )  N = 1 | yg  + yN @ X g = (fl, + f l a ' ) l  @ 1 

6o(Y)~o(x)----(1 | y + y | x)(x | x)=q(x | x)(1 | y + y | x)=q~o(X)~o(Y). 

It  is easy to check tha t  50 has its image in the cotensor product  over HN and 

gives rise t o  a left and right colinear map 6 as desired. | 
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3. H o p f - G a l o i s  o b j e c t s  over  t e n s o r  p r o d u c t s  

In this section we will be concerned with describing all Galois objects over a 

tensor product of two Hopf algebras. We will prove a generalization of part of 

a theorem of Kreimer, [6, Thm. 3.7], which says that the Harrison group of a 

tensor product of two cocommutative Hopf algebras is 

Gal(H1 | H2) ~ Gal(H1) @ Gal(H2) | Hopf(H2, H; ) .  

Note that  the group of Hopf algebra homomorphisms Hopf(H2, H{') can be identi- 

fied with the group Pair(H2, H1) of Hopf pairings//2 @HI -4 k. In this notation, 

Kreimer's isomorphism maps (A1, A2, ~-) to A1 N A2 endowed with the obvious 

right H1 @ H2-comodule structure and the multiplication defined by 

(x | y)(x' | y') : =  zr(y(i),x'(1))X'(o) | y(o)y'. 

We will generalize this description of Galois objects over tensor product Hopf 

algebras to the non-cocommutative case (in which, however, there is no group 

structure on Gal(H1 @/-/2)). 

To keep our results more general, we will, for this section only, assume that  

k is any commutative ring; all Hopf algebras considered will be flat k-modules, 

and Hopf-Galois objects will be faithfully k-flat by definition. 

Recall that,  for an H-comodule algebra A, a Hopf module M EAd H is a right 

A-module as well as right H-comodule whose module structure is an H-colinear 

map: p(rna) = rn(0)a(o) | rn(1)a(1) for a E A and rn E M. If A is an H-Galois 

object, then Schneider's structure theorem for Hopf modules [16, Thin. 3.7] gives 

a category equivalence .Mf~ "~ k.M; it takes a Hopf module to its submodule 

of coinvariants, and it takes a k-module V to V | A with the obvious Hopf 

module structure. In particular, the module structure of M E M H induces an 

isomorphism M c~ H @ A -4 M. 

Our first observation generalizes [6, Thin. 2.5 and Prop. 2.6.], where finite 

projective Hopf algebras are considered. Let H = H1 | H2 be a tensor product 

of two Hopf algebras that are faithfully fiat over k. Note that Hi can be considered 

as a Hopf subalgebra as well as quotient Hopf algebra of H. It is straightforward 

to check that for any right H-comodule V one has 

v c~ = V(H~) : =  {v ~ Vl V(o) | v(1) ~ V | H2} ~- VGI~H2, 

and vice versa. 
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LEMMA 3.1: Let H1,H2 be two k-tlat Hopf algebras and H := H1 | H.2. Let A 

be an H-Galois object. 

Then Ai := A(Hi) is an Hi-Galois object for i = 1, 2, and multiplication 

induces an isomorphism 

A(H1) | A(H~) ~ A 

of right H-comodules. 

Proof: In fact A~ is an Hi-Galois object and a faithfully fiat k-module by [15, 

Rein. 3.11]. Now consider A as a Hopf module in M H~" then by the structure A2 

theorem of Hopf modules [15, Thm. 3.7] multiplication induces an isomorphism 
ACO H~ | A2 -+ A. | 

Our next task is to describe, in the situation of Lemma 3.1, the algebra 

structure on A1 @ A2 resulting from that of A. 

We first review the definition of skew pairings between Hopf algebras and the 

way they give rise to Hopf algebra cocycles. This was studied in [4] with appli- 

cations to the Drinfeld double and other quantum group constructions (however, 

we switch the order of tensorands in a skew pairing). 

Detlnition 3.2: Let L, H be two bialgebras. A skew pairing of L and H is a map 

T: L | H -~ k satisfying 

T(@', h) = T(g, h(2))T(g', h(1)), 

T(g, hh') = T(g(1), h)T(g(2), h'), 

and T(t?, 1) = C(g), T(1, h) = ~(h) for all ~, t '  E L and h, h' �9 H. A skew pairing 

is said to be invertible if it is as an element of (L | H)*. The trivial skew pairing 

is by definition r := CL| 

Note that if H is a Hopf algebra then any skew pairing T: L @ H -~ k is 

invertible with T -1 = 7(idL @S). 

Remark 3.3: Let T: L | H --4 k be an (invertible) skew pairing. Then "? := 

c | T @ E: (H @ L) | (H @ L) --~ k is an (invertible) two-cocycle. 

As in [4] we denote the twisted Hopf algebra (H | L) § by H ~ L. Its 

multiplication is given by (h ~ 1)(1 ~ t~) = h ~ ~ and 

(1 ~ ~)(h ~ 1) = 7-(t~(1), h(1))(h(2) ~ g(2))~'-t (~(3), h(s)). 
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LEMMA 3.4: Let A be an L-H-bicomodule algebra and a: L @ L --+ k a two- 

cocycle. Then k~[A], defined to be A with the multiplication 

x . y :---- a(X(_l),Y(_l))x(o)Y(o) 

is a right H-comodule algebra. Ira is invertible, then h~ [A] is an L~-H-bicomodule 

algebra. 

The proof consists of straightforward computations. 

Definition 3.5: Let Li be a Hopf algebra and Ai a left Li-comodule algebra for 

i = 1,2. Let ~-: L2 | L1 --+ k be a skew pairing. Then we define A I # T A 2  := 

k§ @ As]. If Hi are also Hopf algebras such that Ai are Li-Hi-bicomodule 

algebras, then Remark 3.3 and Lemma 3.4 imply that AI#~A2  is an L1 M~ L2- 

H1 | H2-bicomodule algebra. 

For the following lemma, we will need some facts on the unique Hopf algebra 

L(A, H) for which a given H-Galois object A is an L(A,  H)-H-biGalois object. It 

can be constructed as L(A,  H) := L := (A | A) c~ which is a subalgebra of A| 

A ~ We will use the notation 4 = 4 (1) @4 (2) E A |  for an element 4 E L. Then 

the comultiplication of L is given by A(~) = (4 (1) (0) | (1) (1)[1]) | (4(1) (1)[2] @4(2)), 

where for h E H we denote the image of 1 @ h under the inverse of the Galois map 
~: A @ A  --4 A |  by h [1] |  [2] E A |  Note that h[1]h [2] -- e(h). By [12, Lem. 

3.2, Lem. 3.3] L can be characterized by a universal property: Any H-colinear 

map 5: A --+ W | A factors as (A | f),~ for a unique k-module map f :  L --+ W. 
If W is a coalgebra (algebra, bialgebra), then 5 is a comodule structure (algebra 

map, comodule algebra structure) if and only if f is a coalgebra map (algebra 

map, bialgebra map). In case V in the following lemma is finite projective, the 

lemma is a consequence of these results of [12], otherwise it is a generalization. 

LEMMA 3.6: Let H be a k-Hopf algebra and A an H-Galois object. Pu t  L := 

L(A,  H).  Then for all k-modules V, W there is a bijection 

HomH(V @ A, W @ A ) ~  Homk(V | L, W) 

given by O(a)(v |174  = a(v| (2) and ~(T)(v |  = T(v@a(_l))@a(o). 

Assume that W = k and let a and r satisfy a = ~(r) .  I f V  is an algebra, then 

a is a module structure if  and only if r fulfills 
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for all v, v' C V and ~ C L. I f  V is a coalgebra, then a is a measuring i f  and only 

i f  T satisfies 

for all v E V and ~, ~ E L. In particular, i f  V is a bialgebra, then a gives A the 

structure of  a V-module algebra i f  and only i f  T is a skew pairing. 

Proo~ From Schneider's structure theorem [15, Thm. 3.7] for Hopf modules we 

have the following bijection: 

HomH (V @ A', W | A') -~ Hom_HA(V @ A" N A:, W | A]) 

Homk((V | A" | A:) c~ W) = Homk(V @ L, W) 

which is easily checked to have the claimed form. (In the calculation, we have 

indicated module and comodule structures on tensor products by dots; in partic- 

ular, the comodule structure on A" @A" means the codiagonal comodule structure 

p(x | y) = X(o) | Y(0) | x(1)y(1).) 
From now on let W = k. 

Assume that V is an algebra. If a is a module structure, then 

r (vv '  @ ~)IA = a(vv '  | ~(1))~(2) 

= a(v | ~(v' | ~(1)))~(2) 

= ~(v | ~(v' | ~(~)) | ~(~))IA 

= r(v  

T(V 
T(V 

Conversely, if r fulfills this 

| Ot(V' | ~(1)(0))~(1)(1)[1]~(1)(1)[2] | ~(2))1 A 

| T(V l | ~(1)(0) | ~(1)(1)[1])~(1)(1)[2] | ~(2))1 A 

| ~(2))~(v' | ~(~))IA. 

equation, then we have 

Now assume that V is a coalgebra. If ~ measures, then 

T(V | ~ ) I A  = ~-(v | ~(1)~(1) | ~(2)~(2)) | 1 

= a(v | ~(1)r162 

~- a(V(1) | ~(1))Ol(V(2 ) @ r 

= c~(v(1) | ~(1))~(2)~-(v(2) | r 

= r(vo)  | ~)7(v(2) | r 
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and conversely, if ~- satisfies this equation, then 

a(v | xy) = T(V | X(-1)y(-1))X(o)Y(o) 

= T(V(1) | X(_u)T(V(~ ) | y(_~))X(o)Y(o) 

= a(V(1) | X)a(V | (2) | Y). | 

PROPOSITION 3.7: Let H1 and H2 be two k-fiat Hopf algebras. 

1. Let Ai for i = 1,2 be Hi-Galois objects, put Li := L(Ai, Hi) and let 

~-: L2 | L1 --+ k be a skew pairing. Then AI#~A2 is an H1 | H2-Galois 

object with L(AI#A2,  H1 | H2) = L1 ~ -  L2. 
2. Let A be a right Hl | object. Then there are unique up to isomor- 

phism H~-Galois objects Ai for i = 1, 2 and a skew pairing T: L(A2,//2) @ 

L(A1, H1) --+ k, unique up to composition with coinner automorphisms of 

L(A2, H2) and L(AI, H1), such that A ~- Al~%A2. 

Proo~ To see that AI#~A2 is a Galois object, one checks that the diagram 

AI#~A2 @ AI#~A2 

A1 | A1 | A2 | A2 

I'~AI#A2 " AI#~A2 | H1 | H2 

(23) 

�9 Aa |  | |  
t~A1 | 

commutes, where the right hand vertical arrow just switches tensorands, and a, 

defined by 

o~(x~y Q x' #y ' )  = xT(y(_l) ,Zt(_l) )  | X'(O ) Q Y(O) | yt, 

is an isomorphism because T is invertible. 

That AI#~-A2 is a left L1 ~ L2-Galois object follows from the commutative 

diagram 

AI#~-A2 | AI#~-A2 

(23) [ 

A1 | A1 | A2 | A2 

t~41#A 2 
�9 L1 ~ -  L2 | A I ~ A 2  

t~l ~t " LI | AI | L2 | A2 
A1 | A2 

in which h R.' �9 R | R ~ B | R denotes the left version of the Galois map for a left 

B-comodule algebra R, and 7, defined by 

| | �9 | y)  = | z | | y,  
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is a bijection because T is invertible. 

Note that  the Ai in 1. are uniquely determined up to isomorphism, since clearly 

Ai ~ (AI#-:A2)(Hi).  
Now let A be an H-Galois object for H = H1 | H2. From Lemma 3.1 we have 

the isomorphism, induced by multiplication, A1 @ A2 -~ A, with Ai = A(Hi). 
Put  Li := L(A~, H~). 

We consider the category .A/~ H2 of Hopf bimodules. By definition it consists A2 A2 
of right H2-comodules and A2-bimodules that satisfy the compatibility conditions 

of a Hopf module in .~AH~ as well as A2./~H2. The category A2 A'4H2A2 is a monoidal 

category with the tensor product over A2, endowed with the obvious A2-bimodule 

structure and the codiagonal H2-comodule structure. In [13] we have proved 

that (A./t4AH~, @A~) =~ (L2.M, @) as monoidal categories. The equivalence maps 

a left L2-module V to the right Hopf module V @ A2 with the left A2-module 

structure x(v | y) = x(_ 1)" v | X(o). The inverse isomorphism maps M E A2 "/~AH: 
to M c~ with the L(A2,H2)-module structure t .  m = ~(1)m~(2). Consider A 

as an H2-comodule algebra. Then A2 is a subcomodule algebra, which means 

that  A is an algebra in the monoidal category M H2 It follows that there A2 A2 
is a unique left L2-module structure on A1 making it an L2-module algebra, 

for which the multiplication on A satisfies (xy)(x'y') = x(y(-1) " x')y(o)y' for 

x , x  ~ C A1 and y,y~ C A2. This left L2-action is given by t �9 x = ~(1)x~(2), 

hence is Hl-colinear as a map L2 | A1 ~ A1. Lemma 3.6 applies to yield a 

unique skew pairing T: L2 @ L1 --~ k with 6" x = T(:.,X(_t))X(o), hence xyx'y '  = 
x~-(y(_l), x~(_l))X~(-1)X(o)Y(o)y ~ for all x, x ~ E A1 and y, yt C A~.. 

Now assume that we have another skew pairing X: L2 | L1 --+ k and an iso- 

morphism f :  A -+ AI#xA2.  By restriction, f induces automorphisms fi of A~ 

with f ( xy )  = f l ( x )# f2 (y )  for x E A1 and y C A2. By the universal property of 

Li, there are algebra maps ui: Li --~ k with f~(a) = ui(a(-1))a(o) for all a E Ai. 

It follows that  

yx' =f-l(f(y)f(x')) --= f-l(u2(Y(_l))Ul(X'(_l))(l#y(o))(X'(o)#l)) 

: u2(Y(_2))U 1 (x' (-2))X(Yr x' (-l))f-I (X'r 
/ ,' - -1  t - -1  I =u2(y(_:~))ul(z (-a))~(y(-2),x (-2))ul (x (_l))u 2 (y(_l))x (o)y(o) 

= (X 0 (coinn(u21) | coinn(u~-l)))(y(_l) | x'(-1))X'(o)Y(o) 

for y E A2 and x' E A1, so that Xo (coinn(u2Z) | = T by uniqueness. 

Conversely, if X := T o (coinn(u2) @ coinn(ul)), then essentially the same 

calculation shows that f:  A -+ A I#xA 2 ,  defined by 

f (xy)  -- Ul (x(_ 1))u2 (y(- 1))X(o) #Y(o), 
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is an isomorphism of H-comodule algebras. II 

In general it is hard to say what the group BiGal(L1 | H1 @//2) of bi-Galois 

objects between two tensor product Hopf algebras is. However, we can note the 

easy observation: 

Remark 3.8: Let Hi, Li for i = 1, 2 be Hopf algebras. Then we have an injective 

map 
BiGal(L1, HI)  • BiGal(L2,//2) --~ BiGal(L~ | L2, H1 | 

(A1, A2) ~ A1 | A2 

which is a group homomorphism if Li = Hi for i = 1, 2. 

4. Galois and bi-Galois objects over the general Taft algebras 

We return to the case that k is a field containing a primitive N-th  root of unity 

q. We will determine all Galois and bi-Galois objects over the Taft algebras with 

more than one grouplike generator. These are defined [16] to be 

HN,m := k ( X 0 , . . . , X m - l , Y ) / ( X  N - 1 , y N , y x i  -- qXiY) 

with grouplike elements Xi and (1, X0)-primitive Y. 

We let CN denote the cyclic group of order N. The group algebra kC'~ has 

commuting grouplike generators X1, . . . ,  Xm with defining relations X N = 1. It 

is a selfdual Hopf algebra, with the isomorphism D: kC'~ ~- (kC'~)* determined 

by D(Xi)(Xj)  = q~'r 

We can use the results from the preceding section to compute Galois objects 

over HN,m in view of the following simple observation (that may well be known): 

LEMMA 4.1: There is an isomorphism of Hopf algebras 

f: HN,m+I ~ ker~ | HN 

determined by Y(Xo) : 1 | X ,  f (g i )  : Xi | X for i ~ 1 and f ( Y )  -- 1 | Y. 

Hence, instead of the Taft algebras HN,m we can consider the tensor product 

Hopf algebra kC~ @ HN. We will write X0 := X := 1 @ X and Xi := Xi | 1. 

Let us first fix some notations. In the following, in all sums and products the 

index runs through 1 , . . . ,  ra. In a noncommutative ring, products will be taken 

in ascending order of the indices from left to right. 

We will abbreviate GLm := GLm(Z/(N)) .  This group acts naturally by right 

matrix multiplication on G m for any Z/(N)-module G. If G is a multiplicative 
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abelian group of exponent a divisor of N, then this right action reads r, ~- T = 

([IjoL~Ji)i for a = (ai) �9 G m and T = (tit) �9 GLm. 

We denote by Skewm := Skewm(Z/(N))  the set of all skew symmetric matrices 

R = (rij) �9 M,~(Z/ (N)) ,  i.e. of matrices that  satisfy rii = 0 and rij = - r j i  for 

all i , j .  The abelian group Skewm has a right GLm-action defined by R L_ T = 

(~k,e  rketkittj)i,j. (The group Skewm is naturally isomorphic to the dual group 

(A2(Z/(N))m) * of the exterior square of (Z/(N))  m. With this identification, the 

right action of GLm is the dual of the canonical left action on A2(Z/(N))m.) 

We will now describe the groups of Galois and bi-Galois objects over kC~.  

LEMMA 4.2: The map 

Skewm @(k/kg)  m ~ (R ,a)  v--4 BR,a �9 Gal(kC~)  

defined by 

: :  k ( x l ,  . .  . , X m )  - -  X , X ,  - -  qr'JXjX,) 

with the right kC~-comodule algebra structure determined by p(xi) = xi | Xi 

is an isomorphism of abelian groups. 

I f  N is odd, then the map 

GLm(Z/ (N) )  ~< (Skewm@(@]cN) m) -4 BiGal(kC~)  

(T, R, a) ~ BT,R,o 

defined by BT,R,,, = BR, .  as right comodule algebras with left comodule structure 

deigned by 

: l - I x ? |  
J 

is a group isomorphism. 

Proof: The description of Gal (kC~)  is probably well known. We will sketch how 

to deduce it from Kreimer's  result cited at the beginning of the preceding section. 

First, consider a kCg-Galois object A. This is a strongly graded ring, and has 

a normal basis, so it is easy to see that  it has the form A ~- k[x]/(x g - (~) for 

some a �9 ]r Any isomorphism k[x]/(x g - a) -4 k[x]/(x N - a') maps x to Ax for 

some A �9 ]r and one checks that  x ~ Ax extends to a well defined isomorphism 

iff a = Alva '. This is the desired description of Gal(kC]v ). By induction over [6, 

Thm. 3.7], rising Pair(kC t ,  kCN ) ~- Pair( kCN , kCN ) ~ ~ (Z/  ( N)  ) e, one obtains 

an isomorphism 

Gal(kC~v) ~ Gal( kC u ) m ~ (Z/  ( N)  ) rn(m-1) /2 . 
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Identifying (Z / (N))  re(m-l)~2 with Skewm yields the claim on Gal(kC~).  

In [12, Lem. 4.7] we have shown that there is an isomorphism 

AUtHopf(H) ~(Gal(g)  9 (f,  A) ~-~ IA  �9 BiGal(H) 

for any cocommutative Hopf algebra H; the action of Autnopf(H) on Gal(H) 

is given by A ~- f = A y-1. In our case, we clearly have Autnopf(kC~) ~- 

GLm(Z/(N)) .  We choose the identification 

GLm(Z/(N))  ~ T ~ FT �9 Autsopf(kC~) 

given by FT(Xi) = [Ij X~ ~. Assume N is odd. We have to show BF~IR,a -- ~- 

BR~T,a~ T and FTBR,a ~ BT,R,a. The latter is straightforward, the former is 

proved by considering the isomorphism 

GT: BR~T,a~T  ---~ BFT 1 R,a 

r-r tjl 
determined by GT(Xi) = l l j  xj . 

To see that  this is really well defined, one needs the following fact: Let a, b be 

elements in a k-algebra R satisfying ba = uab for some u C k. Then one proves 

by induction that (ab) N = u�89 SO that, if N is odd and u is any 

N-th  root of unity, then (ab) N = aNb N. | 

LEMMA 4.3: For every r E (Z/ (N))  m ~here is a unique skew pairing 

Tr: HN @ k C ~  --~ k with 7r(X, Xi)  = q-r~ and Tr(Y, Xi)  -- 0 for all i. 

Every skew pairing T: HN | kC~  --+ k equals ~'r for a unique r E (Z/(N))  TM �9 

The proof is immediate, since a skew pairing T is the same as a Hopf algebra 

homomorphism HN -+ kC~  in view of the self-duality of kC~,  and there is no 

noncentral skew primitive element in kC~.  

For the following application of Proposition 3.7, note that the coinner auto- 

morphisms of HN fix X, hence do not affect the skew pairing %, while k C ~  has 

only trivial coinner automorphisms. 

COROLLARY 4.4: There is a bijection 

(Z/(N))  "~ • Skewm x ( k / k  N) x k x (]~/kN) "* --} Gal(kC~ | HN) 

(R, r, o~0, j3, a)  ~ rR,r,a0,~,a 

defined by 

FR,r,ao,~,a := BR,a#r~A.o,~ 
_ y N _  _ ~ - k < x o , . . . , X m , y > / ( x  N (~i, j3, yxi q~~ x j x i - q r ~ J x i x j )  
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where we have put ro := 1 and roi :-~ ri --: -rio. The right comodule algebra 

structure is determined by p(xi) -- xi | Xi and p(y) = 1 | Y + y | Xo. 

Proo[: 

relations with xo := l~x0  and y := l # y  in the twisted product. We have 

( l#xo)(Xi#1) = T~(Xo, Xi )x i#xo = q-r,  ( x i # 1 ) ( l # x o )  

and 

( l # y ) ( x i # l )  = Tr(1,Xi)xi#y 4- Tr(Y, X i ) x i # x  0 -~ x i#y  : ( x i # l ) ( l # y ) .  

One only has to check that xi := xir has the indicated commutation 

We omit the rest of the proof. 

We know by Proposition 3.7 that since L(A, HN) ~ HN for any HN-Galois object 

A and L(B, kC~) ~- kC~ for any kC~-Galois object B by cocommutativity of 

kC~, we have L(A, kC~ | HN) ~- kV~v ~q- HN for a suitable skew pairing % for 

all kC~v | HN-Galois objects A. 

LEMMA 4.5: Let r E (Z/(N))  "~. There is a Hopf algebra isomorphism 

kV~v ~'rr HN -~ kC~ | HN 

X~ ~ l ++ X~ | X ?  

l ~ X o ~  l |  

I ~ Y ~  I@Y. 

Proof." In kC~@HN we have (I |  ~) = X~| ~ = Xi@qr'X~'Y -- 
qr~(xi | X~')(1 | Y). In kC~ ~ HN we have 

(1 ~ Y) (Xi  ~ 1) = q-r(1,Xi)Xi ~ l"r~-l(Y, Xi) 

+ T~(1,X,)Xi ~a Y ' rr l (Xo,Xi )  

+ ~-~(Y, X j X ~  ~ XoT-i-~(Xo,X~) 

= q~'(Xi ~ 1)(1 ~ Y). 

| 

COROLLARY 4.6: Every right kC~ | HN-Galois object has the structure of a 

kC~ | HN-kC~ | HN-bi-Galois object. For every two-cocycle a on kC~ @ HN 

we have (kC~ | HN) ~ "~ kC~ @ HN. The isomorphism class of the Hop[ algebra 

kC~ | HN (the Taft algebra) is uniquely determined by the k-linear monoidal 

category of its comodules. 

In particular, we can choose the left comodule structure A on l~R,r,ao,B,a 

determined by A(x0) = X0 | xo, A(y) = 1 | y 4- Y | x0 and 
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for i > 0 to  make  it a bi-Galois object.  

After  choosing a bi-Galois s t ruc ture  for each Galois object ,  all possible ones 

are ob ta ined  by twist ing the left comodule  s t ructure  with a set of representa t ives  

for the  coouter  a u t o m o r p h i s m  group of kC'~. We will also want  to de te rmine  the 

group s t ruc ture  of B i G a l ( k C ~  | Hg), at  least for odd  N.  To do this, we first 

need some more  facts and notations:  

1. T h e  group (Z/(N)) m acts on the group (]~ ~ k) • (]~/]~N)m by 

(s0, ~,a) ~-  r = ( so ,  ~, ( ~ ) ~ ) .  

2. Le t t ing  GLm act tr ivially on ]~ ~ k, we get an act ion of GLm on (]~ ~ k) x 
(k/kN). 

3. T h e  act ion of ( Z / ( N ) )  m on (]~ ~< k) • (]~/kN)m is GLm-equivar iant ,  t h a t  is 

( ( a 0 , Z , a )  ~ r) ~- T = ((a0,f l ,  a )  ~- T)  ~- (r L T)  

holds for all T E GLm, r E (Z/(N)) m. This ensures tha t  we get a right 

act ion of GLm ~(Z/(N)) m on (k ~(k) x (k/~N),~ defined by ~ ~- (T , r )  = 

(~ ~- T)  ~- r for ~ e (]~ ~ k) • (]~/]~N)m. 

4. The  m a p  

~o: ( z t ( N ) )  m • ( Z / ( N ) )  m ~ (r,  r ' )  ~ (r~r} - rjr~)~,j e Skewm 

is biaddit ive,  hence a two-cocycle on the  group ( Z / ( N ) )  m with values in 

the  tr ivial  module  Skewm. The  m a p  w0 is GLm-equivar iant ,  w0(r, r ~) ~- 

T = wo(r ~- T , r '  ~- T) ,  whence w( (T , r ) ,  ( T ' , r ' ) )  :-- wo(r ~- T ' , r ' )  defines 

a two-cocycle on GLm ~< (Z/(N)) m with values in S k e w , ,  

THEOREM 4.7: Assume  N is odd. An isomorphism 

(GLm ~ ( Z / ( N ) )  m) ~ (Skewm • ~ k) • (]~/]cN) m) > B i G a l ( k C ~  | 

is given by g2((T,r), (R, ( a 0 , f l ) , a )  := AT,~,R,~o,~,a := F~,R,~o,~,a as a r ight  

kC~ | Hg-comodule algebra,  with the left comodule algebra structure deter-  

mined by A(x0) = X0 | xo, A(y) = 1 | y + Y | x0 and 

J 

for i > 0 .  

Proof: For a general Hopf  a lgebra  H ,  let ~ be  a set of H - H - b i - G a l o i s  objec ts  

whose under ly ing right H-Galo i s  objects  are a representat ive sys tem for G a l ( H ) ,  
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and let ~ be a representative system for CoOut(H). Then by [12, Lem. 3.11.] 
we have a bijection 

$- x 6 ~ (6, A) ~+ ~ E BiGal(H). 

For r E (•/(N)) m, R E Skewm, /3 E k, a0 E ]r and a C (]g/igN)m we define 

J ( r ,  R, a0, fl, a) := Fr,R,~o,Z,a with the left comodule algebra structure satisfying 

A(x0) = X0 | A(xi) = X ~ X i  | for i > 0 and A(y) = 1 | y + Y  | 

Choose a representative system A for ]r162 Then 

J :  (Z/(N)) m x Skew,, xA x k x (]c/]~N) TM --+ BiGal(kC~ | g g )  

is injective and yields a bijection when composed with the forgetful map 

BiGal(kC~ | HN) --+ Gal(kC~ @ HN). 

It is straightforward to check that the canonical map 

AutHopf(kC~) x CoOut(HN) --+ CoOut(kC~ | H) 

is a bijection. Hence, choosing a representative system S for ]r the map 

J ' :  GLm x $  x (Z/(N)) m • Skewm • • k • (]g/]gN)m ) BiGal(kC~ | HN) 

given by J ' ( T ,  v, r, R, a0, fl, a) = FT| R, a0, j3, a) is a bijection. Similarly 

to the proof of Theorem 2.5 one shows that there is an isomorphism of kC~ | 
bicomodule algebras 

J ( r ,R ,  vN ao,~,ot) --+ id| ao,fl, Ot) 

x o e-+ vx o 

xi~-+xi f o r i > 0  

y~-+y. 

Since 8 x A ~ (v, a) ~ vga  E ]r is a bijection, we obtain a bijection 

~: GLm • m x Skew,~ x]c • k x (k/kN) m -~ BiGal(kC~v | HN) 

by setting 

kO(T, r, R, a0,/3, a) = Fr| R, ao,/3, a),  

which clearly has the form indicated in the formulation of the Theorem. 
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It  remains  to verify tha t  ko is a group homomorphism.  Let  T, T '  E GLm, 

r , r '  e ( Z / ( N )  m,  R , R '  E Skewm, fi, fi ' E k, s 0 , s ~  e ]~ and a , a '  e (]~/]~N)m. Set 

T "  := T T ' ,  r "  := r ~- T '  + r ' ,  

" E " E ( ' '  ' '  ' 
ri j  := rk t tk i t e j  -}- r k t k i r  j -- r k t k j r i )  + r i j ,  

k,I k 

(n ) l /  7"i 
f i "  : =  fis6 + ~', s~ := s0s6,  and s ,  := s0 ~ @ '  s~.' We have to ~heck 

AT,, ,,, R" ~" a,, ~" ~ AT,r,R,ao,fl,~EJkC~| ,. 

t ~ t~ i 
We can define an i somorphism ~ by ~(xi )  = x o' l l j  x j  | x i  for i > O, 5(xo)  = 

x0 |  and ~i(y) = l | 1 7 4  

In fact ~(x i )  is in the cotensor p roduc t  because 

If '[I( " x )ox,:(xo| xj|174 
J ] 

t j ,  | X ' ~' | x i  = Xo z ' | ~ ( x i ) .  : X X j  

J J J 

For i > 0 we have 
! t 

6 ( x i ) N  = (Xo: I I  xtj "' | x i ) N  = (x  o ,  N,r'] , H ( x ~ ) t ~ '  | x N = s0, UsJT-r t,, si(l'" | 1), 

J J J 

using again t ha t  for any elements  a, b E R of a k-algebra R satisfying ba = uab 

for some N - t h  root  of uni ty in k, we have (ab) N = aNb N. Moreover,  for i , j  > 0 

g k 

= XO J X ~ 2~; ~ X i | Z j X i  

X 0 X 0 X X k | Xi3J j 

q(r~3+ . . . .  ~t rtt~Jrl-b~k,e rketklt~J ) 

r i r j  i @ X i X j  
X X 0 X 0 X X t j  

q(r~3+ . . . . .  

XXro ~ X ~ X o X |  

?.tt 
= q ~ 5 ( x i ) 5 ( x j ) .  
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We omit the remaining details showing that 5 is a well defined bicomodule algebra 

homomorphism. It is then an isomorphism since its domain and codomain are 

Galois objects. | 

COROLLARY 4.8: I f  N is odd and k is algebraically closed, then 

BiGal(kC~' | HN) ~- ((GLm ~(Z/ (N) )  m) ~ Skewm) x (]r ~(k). 
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